Stochastic Chemical Kinetics




Formulation of Stochastic Chemical Kinetics
Gillespie, Physical A, 1992
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Key Assumptions

(Well-Mixed) The probability of finding any molecule in a region d<2 is
given by %.

(Thermal Equilibrium) The molecules move due to the thermal energy.
The reaction volume is at a constant temperature T'. The velocity of a
molecule is determined according to a Boltzman distribution:
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Probability of Collision: Two Specific Molecules
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Given:

e Two spheres A and B with velocities vy and vg, and radii r4 and
rB.

e [ he probability that the center of either sphere lies in a volume dS2

is given by %2.

What is the probability that A and B will collide in the time [t,t 4+ dt]?




In the time [¢,t + dt] molecule A sweeps
a volume of d2 = mr%, |lugall dt

Collision takes place if any part of A
lies in the region df2.

Equivalently ...
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/ During [t,t 4 dt] a molecule with radius r4 +rp
as? sweeps a volume of dQ' = w(ry +r5)? |lvgall dt

Collision takes place if the center of A
lies in the region d<2'.

rA+ TR

The probability of A and B colliding during [t,t + dt] is

1

EW(TA + r5)2|lvpall dt




Note:

e [ he probability of A and B colliding was computed for a given a
relative velocity of v 4 (conditional probability)

e [ he relative velocity is a random variable, and we must average over
all velocities.

If we denote by fpa(-) the probability density of the random variable
VB4 We have

Collision Probability in [t,t4dt]
/R3 P(collision in [t,t + dt] | Va4 =v) fa(v)dv

1
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mean relative speed




The probability density function of fg4(-) can be easily computed from

the Boltzman distribution of the velocity and the independence of Vg,
Vy, and V..
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Probability of A-B collision within [t,t4dt]:
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Not all collisions lead to reactions. One can factor in the "reaction
energy’ .

Assumption: An A — B collision leads to a reaction only if the kinetic
energy associated with the component of the velocity along the line of
contact is greater than a critical energy e.

Reaction if %mz‘%A > ¢

It can be shown that:

Probability (A-B reaction | A-B collision) = e F87T

Probability of A-B reaction within [t,t4dt]:
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Given N species: S1,...,8n with populations x1,...,zN at time t.

Consider the bimolecular reaction channel (with distinct species):

R: S+ Sj — products

The number of distinct §; —&; pairs that can react is: x; - ;. Therefore,

Probability of an R reaction within [t,t4dt]:
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w(-) is called the propensity function.

Consider the bimolecular reaction channel (with same species):

R : S, + S; — products

The number of distinct S;—S; pairs that can react is: xi(%_l). T herefore,

Probability of an R’ reaction within [t,t4dt]:

ri(z; —1) 1 sz \/@e_’ﬁ;T dt = w(x) dt
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Reactions and Propensity Functions

Propensity Rate

Reaction
w(x) C

¢ — Products

S, = Products

1 SkBT — €
S; + S; = Products C - T;x; 57r(m-+rj)2 B ¢ BT
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x:(x; — 1 4 o [8kBT —p=r
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For a monomolecular reaction: c¢ is numerically equal to the reaction
rate constant k£ of conventional deterministic chemical kinetics

For a bimolecular reaction: ¢ is numerically equal to k£/2, where k is the
reaction rate constant of conventional deterministic chemical kinetics
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A Jump-Markov description of
chemical kinetics

® At any time, the state of the system is defined by its integer
population vector: x € Z"

® Reactions are transitions from one state to another:

[10, 15] [11,15]

# species | H# speg

[11,14] [12, 14]




A Jump-Markov description of
chemical kinetics

® At any time, the state of the system is defined by its integer
population vector: x € Z"

® Reactions are transitions from one state to another:

® T[hese reactions are random, others could have occurred:

[9, 5] [10, 5] (11,151 )l (12, 15]

[9, 4] [10, 4] [, 4] [12, 14]
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A Jump-Markov description of
chemical kinetics

Or others...
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A Jump-Markov description of
chemical kinetics

Or others... (. e
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A Jump-Markov description of
chemical kinetics

Or others... P
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A Jump-Markov description of
chemical kinetics
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Reaction Stoichiometry

* The Stoichiometric vector, s, refers to the relative change in the
population vector after a reaction.

* There may be many different reactions for a given stoichiometry.

So — [—I,O]T S3 — [O, 1]T Sq4 — [1, —1]T
SQ — SQ m SQ — 81

S1+ 62 — 1 -
SQ 82 — 81 m
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Reaction Propensities

* The propensity, w, of a reaction is its rate.

* w,dt is the probability that the 11" reaction will occur in a
time step of length dt.

* Typically, propensities depend only upon reactant populations.
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Markov Is a forgetful process




Markov Reaction Times

Probability reaction will occur inlt, t + At): wAt + O(At)?
Probability reaction will not occur in [t,t + At) 1 —wAt + O(At)?

Probability a reaction will not occur in two such time
intervals[t,t + 2At): (1 — wAt + O(At) ) =1 — 2wAt + O(At)?

Suppose thaty = K At , then the probability that no reaction will
occur in the interval [t,t + 7)is

K
(:_ - w% + O(K—Q))
Taking the limit as K goes to infinity yields that the probability that
no reaction will occur in the interval ¢, tK T)is
lim (1 — w% + O(K_Z)) = exp(—wT)

k— o0




Markov Reaction Times

The probability that a reaction will occur in the interval [t,1 + T)
is I'r(7) =1 —exp(—wr). This is a cumulative distribution.

The density (derivative) of the random number, 7', is:
1

fr(r) = ” exp(—wT)

Such a random number is known as an exponentially distributed
random number.

Notation: 7T € EXP(\) — T is an exponentially
distributed r.v. with
parameter: A\.




Markov Reaction Times

® We have assumed that the system is fully described by the
population vectors.

® |f no reaction occurs, then nothing will have changed.
® Waiting times must be memoryless random variables.
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Probability Density
Probability Density

time (s) ' time (s) time (s)

® Nlo matter where we cut and scale the distribution, it must
always looks the same.

The exponential is the only
continuous r.v. with this property.




Generating Reaction Times

® Jo generate an exponentially distributed random number, all we
need is a uniform random number generator.

® Find the cumulative distribution,
F(t) =1 — exp(—At)

® Generate uniform random number,
r € Ul0, 1]

® Find intersection where F'(t) = r:

11 1
T=—10
gl—?”
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® This is the time of the next reaction.
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'he (Chemical) Master

-orward Kolmorogrov




The Chemical Master Equation

Prob. that no reactions fire in [t,t +dt] = 1 — X, wi.(x)dt + O(dt?)
Prob. that reaction Ry fires once in [¢,t + dt] = wy(z)dt + O(dt?)
Prob. that more than one reaction fires in [¢t,t + dt] =O(dt2)

at x No reaction fires

p(z,t+dt) = p(z,t) (1 — > wy(x)dt + O(dt2)>
k

+ Y plx — sp,t) (Z wy (z)dt + O(dt2)> + O(dt?)

k
R;. reaction more than one

R;. fires once

away from z reaction in dt

plx,t+dt) —p(x,t) = —p(:c,t)Zwk dt—l—Zpa:—sk, twg(z)dt + O(dt?)

The Chemical Master Equation
dp(xz,t)
= —p(x,1) Zwk(w) + Zp(w — s, t)wg(x — Sk

dt
Slide Contributed by Mustafa Khammash




—xample: Transcriptio

N and degradation of m

(as a birth

-death process)




RNA Copy Number as a Random Variable

MRNA copy number N(t) is a random variable

Transcription: Probability a single mRNA
IS transcribed in time dt is k dt

Degradation: Probability a single mRNA
IS degraded In time dt is nvydt

Slide Contributed by Mustafa Khammash



v Cuaslion:

—-1)y Y (n+ 1)y

Find p(n,t), the probability that N(¢) = n.

P(n,t+dt) = P(n— 1,t) - kdt Prob.{N(t) = n — 1 and mRNA created in [t,t+dt)}
+ P(n+1,t) - (n4+ 1)~dt Prob.{N(t) = n+ 1 and mRNA degraded in [t,t4dt)]

+ P(n,t) - (1 —kdt)(1 — nvydt) Prob.{N(t) =n and
MRNA not created nor degraded in [t,t+dt)}

P(n,t+dt) — P(n,t) = P(n — 1, )kdt + P(n + 1,t)(n + 1)vdt — P(n, t)(k + ny)dt
+O(dt?)

Dividing by dt and taking the limit asdt — O

T he Chemical Master Equation

%P(n, £) = kP(n — 1,8) + (n+ 1)yP(n+ 1,8) — (k + n7)P(n, t)

JULTU DY IvViuSLldlAd T\I'lG



RNA Stationary Distribution

We look for the stationary distribution P(n,t) = p(n) Vit
The stationary solution satisfies: %P(n,t) =0

From the Master Equation ...
(k + nvy)p(n) = kp(n — 1) + (n+ 1)yp(n + 1)

n =20 kp(0) = ~yp(1)
n=1 kp(1) = 2vp(2)

kp(2) = 3vp(3)

[ kp(n — 1) = ny p(n)gJ
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kp(n — 1) =nvy p(n) We can express p(n) as a function of p(0):

p(n)

0
We can solve for p(0) using the fact ) p(n) =1

n=0

1

Poisson Distribution

Slide Contributed by Mustafa Khammash



We can compute tnhe mean and variance of the Poisson RV N with
density p(n) = e %%

nl:

©.@, o0
an

p=E[N]= ) np(n)=e* n— =a
n=0 n=0 Uz
T he second moment

o0

E[N?] = > n’p(n) =a® +a

n=0

T herefore,
02 = E[N?] — E[N]° = a

mean = variance = a

The coefficient of variation Cy = o /pu is
1 1

T Va Jh

Cy
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nemical

Relationship of Deterministic to Stochastic

PrOCesses.




Relationship of Stochastic (X) and
Deterministic (@) Descriptions

Given N species X;,..., Xy and M elementary reactions. Let &, := [X].

A deterministic description can be obtained from mass-action kinetics:

dP
- = Sf(®)

where f(-) is at most a second order monomial. It depends on the type
of reactions and their rates.

Example:

dP
—k1 P AP — koPy E = Sf(cb) where

—k1P AP + kP y

k1P P
(@)= e
k1P A Pp 2% A




Relationship of Stochastic (X) and
Deterministic (@) Descriptions

- X
Define X%2(t) = #

Question: How does X%2(t) relate to ®(¢)?

Fact: Let ®(¢) be the deterministic solution to the reaction rate equa-

tions

dd
d— — Sf(cb)a CD(O) —
t
Let XQ(t) be the stochastic representation of the same chemical sys-

tems with X$2(0) = dy. Then for every ¢ > O:

im sup |XQ(3) Cb(s)‘ =0 a.s.

() —o0 s<t

Slide Contributed by Mustafa Khammash



r produced with rate k(x)
and degraded with rate ~vygx.
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Moment Computations

® Affine Propensity
® Moment Closures




Moment Computations

For the first moment E[X;], multiply the CME by z;
and sum over all (z1,...,zyn) € NV

For the second moment E[X;X;], multiply the CME by z;z;
and sum over all (z1,...,zyn) € NV

dE[X;]

g st [wr(X)]

M

>

k=1
dBE[X;X] M
7 2

$;k B[ Xjwp(X)] + E[Xjwip(X)]s 1 + sipsjnElwi(X)])

Let w(z) = [wi(x),...,wy(x)]’

In matrix notation:
dE[X]

dt
dE[X X 1]

dit

SEw(X)]

SE[w(X)X!T] + Elw(X)XT1'ST + S{diagE[w(X)]} ST




Affine Propensity

Suppose the propensity function is affine:

w(x) = Wz 4 wq, (W is N XN, wgis N x 1)
Then E[w(X)] = WE[X]4+wg, and E[w(X)X!] = WE[XX!|4+woE[XT1].

This gives us the moment equations:

d : -
@E[X' SWE[X] 4+ Swqg First Moment

E[xxT SWE[XXT]+ E[XXTIWTST + S diag(WE[X] 4+ wg)ST

d
dt

SwoE[X'] + E[X]wgST Second Moment

These are linear ordinary differential equations and can be easily solved!

Slide Contributed by Mustafa Khammash



Affine

Propensity (cont.)

Define the covariance matrix ~ = E[(X — E[X])(X — E(X)]*].
We can also compute covariance equations:

d
T =SWE+ swWtst + 8 diag(WE[X] + wg)ST

Steady-state Case

T he steady-state moments and covariances can be obtained by solving
linear algebraic equations:

Let X = Iim E[X(¢)] and >~ = lim >(t).
t—00 t—00

T hen

SWX = —Swg

SWE +SWst 4+ 8 diag(WX +wg)St =0

Slide Contributed by Mustafa Khammash



Fluctuations Arise from Noise

Driven Dynamics

Define A = SW, and B = S,/diag(W X + wp).

T he steady-state covariances equation

SWE +SWIsl + 5 diag(WX +wg)ST =0

becomes

AS +5AT + BBT =0 Lyapunov Equation

Slide Contributed by Mustafa Khammash



—xample: Gene

—X[pression




Application to Gene Expression

Reactants
X1(t) is # of mMRNA; X5(t) is # of protein

% Reactions
: g :

' — mRNA

protein % g . mRNA I, ¢

- mRNA & protein + mRNA

. protewn LN o

Stoichiometry and Propensity

Szl—IOO
O 0 1 -1

Ky

YrX1
kpX1
_”YpX 2

w(X) =




Steady-State Moments

Steady-State Covariance

_ 2k 0
BBl =35 diag(W X + wO)ST = OT 2kpkr

Yr

T he steady-state covariances equation
A +35A + BB =0 Lyapunov Equation

can be solved algebraically for X.

_ " ok ;
r Yr (vr+p)

kpky kpkr(l L Ky )
(e tp) R




Coefficients of Variation

14 )
Yr + Yp

Question: Does a large X5 imply a small Cyp?

1 k
Cg, = 1+ —7F
p krkp Vr + Yp
YrYp

1 kp _Orp 1
2 Tk — ’
rfp \ yr + Yp kr v+ Yp

YrYp

\ k'r' k’p

Xo = ! which can be chosen independently from Coyp.

Large mean does not imply small fluctuations!




(P} = 100,

kr =0.01 Kk, = 10,000
C;, = 50.01

1

200 300 400
Time, s

kr =1 kp =100
C;, =0.51

100

100 200 300 400
Time, s

k, =100 k, =1
C;, =0.015

Vr ="Yp =1
ky = 0.1 Kk, = 1000
C;, =5.01

100 200 300 400
Time, s

kr =10 kK, = 10
C;, =0.06

100 200 300 400
Time, s

kr =1000 k,=0.1
C;, =0.0105

__fz__ 1
E{P}

%% 100 200 800 400 ' 100 200 300 400
Time, s Time, s




Moment Computations

e Affine Propensity
® Moment Closures




Moment Closures.

From before, the mean level changes as:

X = SE[w(X)]

e \When Second and Higher order terms exist in the propensity functions,
each moment depends upon higher moments.
» For example, if (X)) =uX? Xv ,then

dE[X]
dt

e The first moment depends upon the second; the second upon the third;
and so on.

= SuE[X!X]v

¢ Moment closures are approximations that attempt to remove this
dependence.




Moment Closures.

M
dE[X;] = Y sippElwi(X)]
dt k=1

PR = 3 (s (O] + B+ sips Bl (D)
k=1

{w | | Al {oid) Fua({wits {oiit Lokt )
Aot || fo(uid {oid) Fuo({ust {oit okt )

it | | At o)) +ar it {oih)
Aot || 2t {oag ) +aa({uat, {oi))

where the choice of w7 and u»
depends upon the chosen moment closure.




Gaussian Moment Closure

¢ |f one assumes that the distributions are Gaussian, then the closure is
simple:

oijk = E{(Xi — E{X; })(X; — E{X; })(Xp — E{Xi})} =0

e which yields:
4:{(XZXJX/€} — — 41{X7;Xj} “:{Xk} — “1{Xij} “:{Xi}
—E{X. X, }E{X;} + 2E{X; }E{ X, }E{X}}

e Higher moments are easy to derive with a moment generating function:
My (t) = exp (p' t + 1/2¢" 3t),

dnl—l—...—l—n4

E{g" .. = M. (t
{7 7'} dri*...dxy* (t)




Many other closures are possible:

e |f one assumes that the distributions are Log-Normal, a different closure
IS used:

0[XGXGELX XL E[X; X ]
C[XGIE[XGIE[XE]

L[X.X5 X =

¢ One of the most common closures is the Linear Noise Approximation.

¢ |n this, all moments are written in terms of themselves and lower
moments:

» the mean is set equal to the deterministic process.
» the second moments are assumed to be gaussian, and depend upon the mean

and itself. g | {w} f1{u; )

dt| {og;} | | folus{oi})




Noise Suppression and

—xploitation (

—xamples)

® Feedback for Noise Suppression
® Stochastic Focussing
® Stochastic Switches




Noise Attenuation through Negative Feedback

Reactants
X1(t) is # of mMRNA; X5(t) is # of protein

Reactions
k

| o — mRNA kr = kg — k1 - (# protein)
protein " \’ - mRNA 7, ¢

- mRNA ﬁ protein + mRNA

. protewn LN o

Stoichiometry and Propensity

T

O 0 1 -1

| ]ko — k1 - (# protein)

ko — k1 Xo|
YrX1

w(X) =




Steady-State Moments

T

k1 k
1 1~p
—I_’Yp%“_

Steady-State Covariance

. S ko + vrpr — k1p 0
BB! = 8 diag(WX + wp)St = 0 p
9 ) [ 0 kpir + Yplip

T he steady-state covariances equation

A +5AT + BB =0 Lyapunov Equation

can be solved algebraically for X.

1 — b k
= ¢ F 1| pp vvheregb:—1
14+0¢9 147 Yp

b =




Feedback vs. No Feedback

In order to compare the noise in the two cases, we must ensure that
both configuations have the same mean!

Impose the constraint: pl b = plV¥'8B =1 13
This may be achieved by choosing ko = kr + kipb F'5.

£ $
. .W — 9 — § —> ¢
protein gg gg

no feedback T g ~ feedback

' a
kr

T

—l Tko — k1 - (# protein)

*

Hp

b . 1—¢ . «
Variance [1_|_77 | 1] Hp [1+b¢.1+77 | 1] Hp
<1

Protein variance is always smaller with negative feedback!




probability

W;w
G —9

—l Tko — k1 - (# protein)

100
protein molecules

more feedback

Note that these distributions are NOT Gaussian.




=Xploiting the Noise:
—allure of the linear noise approximation

400
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_IKT — }C])//lC(l 0 16 26 50
n .
oK N is #S
convex [ After shift <n> = 5, <g> = 3%

From Jensen's Inequality: Before shifl, <n> = 10, <g> = 1%

E[]—E[ 1 ]>
R PSRN (s

=

D0

Probability (%)

(=]

0 2 4 6 8 i 12 14 16 18 20
_ Mumber of signal molecules

* Noise enhances signal!

Johan Paulsson , Otto G. Berg , and Mans Ehrenberg, PNAS 2000



